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Abstract—The plastic relaxation of a shear crack situated normal to the interface of a second phase particle
of circular cross-section is quantitatively analyzed. The ratio of applied stress to yield stress and the relative
displacement of the crack faces at the tips of the crack in the matrix and the interface in the second phase are
related to the crack parameters namely the length of the crack, the width of the plastic zone in the matrix and
the second phase. The effect of the shear modulus and size of the second phase particle on the behaviour of
the plastic zones is determined. A critical value of the relative displacement of the crack faces at the tip of the
crack is used as the criterion to determine the tendency to brittle crack extension into the matrix and the
second phase.

INTRODUCTION

The stress required to extend in a brittle manner a shear crack situated at a circular inclusion in an
infinite matrix has been obtained from the analysis of pile-ups of screw dislocations[1, 2]. The
plastic relaxation of a shear crack at a circular inclusion has also been analyzed[3] by the method
of Atkinson and Kay [4]. The analysis assumed that the plastic zone forms at the crack tip in the
matrix only so that the shear crack and the plastic zone are situated in the matrix on a plane
normal to the coherent circular interface. But it has been shown[1] that a shear crack at a circular
inclusion introduces internal stresses inside the inclusion which become singular at the interface.
These large internal stresses inside the second phase should be relieved by the formation of
another plastic zone ahead of the crack tip at the interface in the second phase. This paper takes
into consideration the simultaneous formation of the plastic zones at the crack tips in the matrix
and the second phase. The shear crack normal to the circular interface is represented by a double
pile-up of screw dislocations and the plastic zones at the crack tips by two giant screw
dislocations. The positions of the two giant screw dislocations give the extent to which the plastic
zones are spread and the magnitude of their Burgers vectors gives the relative displacement of
the crack faces at the tips. The results of the analysis are used to discuss the plastic relaxation of
a shear crack at a circular inclusion.

ANALYSIS

Consider as shown in Fig. 1, a shear crack normal to the interface of a circular inclusion
represented by a double pile-up of screw dislocations. The plastic zones at the crack tips in the
matrix and the second phase are represented by giant screw dislocations of Burgers vector M:b
and M.b respectively. The equilibrium of the shear crack with the plastic zones under the action
of a stress o,, = o applied at infinity is given by

J—(L+R) f(t) dt+ KJ'(L+R)! f(t) dt _ K(N +M,+ MZ)
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Fig. 1. Schematic illustration of a shear crack with plastic zones situated normal to the interface of a second

phase particle of circular cross-section represented by a double pile-up of screw dislocations. The plastic zones

at the tips in the matrix and the second phase are represented by giant screw dislocations of Burgers vector M, b
and M. b respectively. The crack is assumed to be present before the stress is applied.

M, KM, (1+K)M, 2o,
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=0, L1>L,L2<R (1)

where K = (G.— G))/(G2+ G)), f(t) is the unknown dislocation distribution function represent-
ing the shear crack, N is the algebraic sum of all the dislocations in the pile-up and
om = o(1— KR?/x? is the effective applied stress acting on the plane of the crack in the
matrix [5]. Substituting x/L =r,¢t/L =s, L/|R+1=8,L,/R +1= B, and L»/R = B,, equation (1)
can be written as

Bf(s)ds+K Bf(s)ds_K(N+M1+M2)+ M, KM,

y P v r=1s r r=8. r-1/g,
(1+K)M: 270.R _
T TG T Ofor B> B )

The solution to equation (2) with bounded end points is found to be

F(s)=[2(m*cosh® u + D{A, sinh (wu)/(p.*> cosh® u — 1)
+[A,sinh (wu)+ A; cosh (gu) sinh u]/(p.” cosh® u — 1)}
+4m cosh u{[A4sinh(gu)+ As cosh (wu) sinh u]/(p,” cosh® u — 1)
+ Ae sinh (gu)/(p2” cosh® u — D})/(m cosh u + 1)’ for B >1,1/8 < B, < 1 3)

where  cos(wm)=-cos(gm)=K, m=@+D/(B-1), m=@B:+D/(B.-1), m=
(B2+ D/(1 = B2), pr=m/[my, p>=m[mzand u = cosh™ {(s + 1)/m(s — 1)}. The constants A, to As
are determined by substituting for f(s) in equation (3) and evaluating the integrals using contour
integration. Further, equating the constant terms, the coefficients of 1/r, 1/r? 1/(r— ).
1/(r — 1/B8,) and 1/(r — B2) on both sides of equation (2) and solving the resulting equations gives
the constants A, to As. The above solution to equation (2) is valid for all values of 8; >1 and
1/8 < B2< 1. Thus the results obtained will be valid for all widths of the plastic zone in the matrix
but the width of the plastic zone in the second phase is restricted to extend upto a point 1/8 from
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the origin in the second phase. As pointed out by Atkinson and Kay [4], the model used here in the
analysis of the plastic zone at the crack tips is more valid for small scale yielding and therefore
the solution given by equation (3) suffices. The boundedness condition{6] of the distribution
function is applied by writing equation (2) in the form

Bf(s)ds_27rR0'm+K(N+M1+M2)_ M, KM,

1 r— 38§ B Glb r r—ﬁ1_r—1/31
1+ K)M, Pf(s)ds
- T—Bz -K . r_]/s_g(r)- (4)

The integral on the right hand side is evaluated by substituting for f(s) from equation (3) so that
the above equation becomes an equation with a simple Cauchy type integral on the left and a
function of r on the right. The boundedness condition of the distribution function can now be
applied in the form

g(r)dr
f[v—mﬁ =0 ©

It may be noted that equation (5) relates the applied stress, the Burgers vectors of the giant screw
dislocations Mb and M.b to the crack parameters B, B and B.. Two more equations to
determine the applied stress, M,b and M,b in terms of the crack parameters are obtained by
invoking the equilibrium of the two giant screw dislocations. The equilibrium of the giant screw
dislocation at (L4, 0) is given by the condition that the total stress acting on it should become
zero. Thus, assuming the frictional stress opposing the movement of the giant screw dislocation
in the plastic zone in the matrix to be equal to the yield stress o, of the matrix, the condition of
zero stress gives,

Pf(s)ds K ® f(s)ds K(N+M1+Mz) 1@1

Bl—'s 1 ﬂl_lls
(1+K)M2 27R(Om — o-,)
Br- B Gb  ° ©)

Similarly the equilibrium of the giant screw dislocation inside the second phase at (L., 0) can be
obtained using the o,, component of stress field due to a screw dislocation in the second
phase[5]. Assuming the frictional stress opposing the movement of the giant dislocation in the
plastic zone in the second phase to be equal to the yield stress of the second phase, the condition
of zero stress gives

f(s)ds (1+K)M: K(1+K)M:8: 2mR(gi—o0y) _ -0

+K) | ms T Biop (-KB2-1  Gib

)

where oy = o(1—-K) is the effective applied stress acting on the y =0 plane in the second
phase[5]. In equation (7), it is assumed for convenience that the yield stress of the matrix and the
second phase are equal. o/a,, GiM.b/27L,0, and G,M.b[27L,a, are determined explicitly in
terms of the crack parameters B, 8; and B, by solving equations (5-7). The lengthy mathematical
expressions involved in these equations are avoided here to conserve space but interested
readers can obtain the exact details from the author.
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DISCUSSION

The results obtained in the previous section may now be analyzed numerically to determine
the behaviour of the plastic zones at the crack tips. a/o, is the ratio of applied stress to yield
stress. G1M,b/[2wL .oy is considered as the relative displacement of crack faces at the tip of the
crack in the matrix (RDC 1). Similarly GiM.B/2rL.o, is considered as the relative displacement
of crack faces at the tip of the crack in the second phase (RDC 2). B8, and 8- give the extent to
which the plastic zones in the matrix and the second phase respectively are spread under the
action of the applied stress at infinity. As pointed earlier, the results of the analysis are expected
to be more valid for small scale yielding, i.e. for 8/B: near unity and 8,/B near zero. Also values
of o/a, less than unity only are relevant. ¢/a,, RDC 1 and RDC 2 are shown in Figs. 2 and 3 as
functions of B/8, for B =2, K = —0-5 and 0-5 and various values of the ratio of the width of the
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Fig. 2. o/o,, RDC 1 and RDC 2 shown against 8/8, for K = ~0-5, 8 = 2 and various values of C.
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Fig. 3. ¢/, RDC 1 and RDC 2 shown against 8/8, for K = 0-5, 8 = 2 and various values of C.
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plastic zone in the second phase to the width of the plastic zone in the matrix, ie.
C = (1 B2)/(B.— B). These curves are plotted against 8/, such that for a given value of C, the
condition imposed by the solution namely B, > 1/B is satisfied. Thus the range of 8/8, for any 8
decreases with increasing values of C. It is seen that for small scale yielding (8/B, near unity),
oloy and RDC 1 increase with increasing width of the plastic zone in the matrix (8/8:
decreasing) and the second phase (B/B. decreasing). But o/o, and RDC 1 decrease with
increasing degree of yielding for large scale yielding. RDC 2 increases with increasing degree of
yielding in the complete range. For a given width of the plastic zone in the matrix, o/o, and RDC
2 increase but RDC 1 decreases with increasing width of the plastic zone in the second phase. A
critical RDC criterion (CRDCC) may now be used to predict the tendency to brittle crack
extension namely if the relative displacement of the crack faces at the tip exceeds certain critical
value, the crack extends in a brittle manner. Application of critical RDC criterion (CRDCC) to
RDC 1 and RDC 2 in Figs. 2 and 3 indicates that the tendency to brittle crack extension into the
matrix decreases with increasing values of C but the opposite is true for brittle extension into the
second phase. In order to show the effect the shear modulus of the second phase, o/o,, RDC 1 and
RDC 2 are shown in Fig. 4 as functions of 8/8, for C =0-05, B8 = 2 and various values of K. /0,
increases but RDC 1 decreases with increasing hardness of the second phase particle for small
scale yielding. The opposite happens for large scale yielding. RDC 2 decreases with increasing
values of K in the complete range of yielding. Therefore the tendency to brittle crack extension
into the matrix and the second phase decreases with increasing hardness of the second phase for
small scale yielding. The effect of the particle size on the behaviour of the plastic zones is shown in
Fig. Sfor C = 0-05and K = 0-3. o/o, decreases and RDC 2 increases with decreasing particle size.
RDC 1 decreases with decreasing particle size for small scale yielding but the opposite happens for
large scale yielding. These results are also found to be valid for any negative value of K. The
effective applied stress o., on the giant screw dislocation increases with decreasing particle size for
apositive value of K. But the image repulsive force due to the second phase on the giant dislocation
decreases. The net result is a less rapid decrease in o/ o, with decreasing particle size. Application
of CRDCC to RDC 1 and RDC 2 shows that the tendency to brittle extension into the matrix
decreases but the tendency to brittle extension into the second phase increases with decreasing
particle size.
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Fig.4. o/,,RDC 1 and RDC 2 shown against 8/B, for 8 = 2, C = 0-05 and various values of K.
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Fig. 5. a/o,, RDC 1 and RDC 2 shown against 8/8, for C = 0-05, K = 0-3 and various values of 8.

SUMMARY AND CONCLUSIONS

The plastic relaxation of a shear crack situated normal to the interface of a second phase
particle of circular cross-section is quantitatively analyzed and the behaviour of the plastic zones
at the tips in the matrix and the second phase obtained. The following important conclusions have
been arrived at.

(1) The ratio of applied stress to yield stress (a/o,) and the relative displacement of crack
faces at the tip of the crack in the matrix (RDC 1) and the second phase (RDC 2) increase with
increasing width of the plastic zone in the matrix for small scale yielding. For a given width of the
plastic zone in the matrix, /o, and RDC 2 increase but RDC 1 decreases with increasing width
of the plastic zone in the second phase. Application of critical RDC criterion (CRDCC) shows
that with increasing width of the plastic zone in the second phase the tendency to brittle crack
extension into the matrix decreases but the tendency to brittle extension into the second phase
increases.

(2) aloy is higher for higher values of the shear modulus of the second phase particle and
small scale yielding. This is not true for large scale yielding. The tendency to brittle crack
extension into the matrix decreases with increasing shear modulus of the second phase for small
scale yielding only. The tendency to brittle crack extension into the second phase decreases with
increasing shear modulus of the second phase in the complete range of yielding.

(3) o/o, decreases with decreasing particle size for all values of the shear modulus of the
second phase. The tendency to brittle crack extension into the matrix decreases with decreasing
particle size for small scale yielding only. The tendency to brittle crack extension into the second
phase increases with decreasing particle size in the complete range of yielding.

It should be pointed out finally that as a consequence of the model used in the analysis of the
plastic zones the results obtained in this paper are more correct for small scale yielding.
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